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Algebraic theory is used to fit the set of bound vibrational energy levels of H2 and its isotopomers, up to the
dissociation limit and to an accuracy of within 1 cm-1 in each case. Coordinate space potential functions are
constructed from these algebraic Hamiltonians, and the limitations of the algebraic approach are assessed.

1. Introduction

Algebraic methods have been applied to problems in molec-
ular physics for a number of years, with applications extending
from one- and three-dimensional treatments of diatomic mol-
ecules to the coupled vibrational and rotational motions of
triatomic and higher polyatomic molecules. Comprehensive
reviews of the algebraic approach have recently been published.1-3

The simplest problem to which algebraic theory has been
applied is the one-dimensional vibrational motion of a diatomic
molecule,4,5 and this may be considered as a testing ground for
the basic algebraic approach. However, despite the fact that
fits of algebraic Hamiltonians to diatomic vibrational energy
levels have been made previously, quantitative accuracy was
not achieved. Such accuracy is necessary if the algebraic
Hamiltonians which generate fits to vibrational spectra are to
be used subsequently in the construction of potential energy
functions in coordinate space. Although well-known techniques
exist for the inversion of spectroscopic data6 to generate diatomic
potential functions,7 it is appropriate to study the applicability
of the algebraic approach in this regard because of its capability
of extension to polyatomic species for which the link between
spectrum and potential by conventional methods is more difficult
to achieve. To date, ab initio calculations have been used to
calculate potential energy surfaces for triatomic molecules with
spectroscopic accuracy,8 and vibrationally excited states of small
polyatomic molecules have been analyzed by canonical Van
Vleck perturbation theory.9

We shall demonstrate here that the full set of bound energy
levels of a diatomic molecule, up to the dissociation limit, can
be represented by the eigenvalues of an algebraic Hamiltonian.
The resultant Hamiltonian can then be related to a coordinate
space potential function representing the one-dimensional
vibrational motion of the diatomic molecule.

The present paper is structured as follows. In the next section,
we review the algebraic theory appropriate to the one-
dimensional treatment of the vibrational motion of diatomic
molecules and show how it relates to the vibrational energy
level spectrum. By including both linear as well as quadratic
Casimir invariants of the dynamical symmetry associated with
the O(2) subgroup of U(2), we are able to introduce the
flexibility required to provide accurate fits to the vibrational
levels of H2 and its isotopomers HD and D2. In section 3, we
relate the linear Casimir invariant of O(2) to the square root of
the Morse oscillator Hamiltonian in one dimension; the quadratic
Casimir of O(2) is related to the Morse Hamiltonian itself.4,5

Removal of the momentum-dependent terms permits the iden-

tification of a potential function which is essentially a power
series in the square root of the Morse potential function. The
potentials derived for the various isotopomers are found to
correspond to approximately the same value of well depth. It is
shown that a minor modification to a previously proposed
scheme for the construction of potential functions from algebraic
Hamiltonians is capable of generating identical results, which
offers the possibility of extension to more complex systems.
The paper concludes with an assessment of the strengths and
weaknesses of the algebraic approach in generating potential
functions from accurate fits to spectral data.

2. Algebraic Theory of Diatomic Molecules

Background Theory. Stretching vibrations in algebraic
theory can be described in terms of U(2), the unitary Lie algebra
in two dimensions.4,5 This algebra can be represented in terms
of Casimir invariant operators of the algebra and subalgebras
which correspond to a particular dynamical symmetry chain.
Expansion of an algebraic Hamiltonian in terms of the Casimir
invariant operators of the algebra and its subalgebras leads to
energy eigenvalues which can be written down by inspection
using the known eigenvalues of these Casimir invariants with
respect to the appropriate basis set.

The U(2) algebra may be realized in terms of two boson
creation and annihilation operators, with generatorst†t, s†s, t†s,
ands†t with where the (number) operator

is the Casimir invariant of U(2) and characterizes its irreducible
representation.

Although U(2) possesses two dynamical symmetry chains,
namely

the latter (O(2)) chain has been shown to be particularly
appropriate for the treatment of anharmonic vibrational motion
in diatomic molecules,4,5 although it is known that the two
subalgebras O(2) and U(1) are themselves isomorphic.1

For the O(2) chain, the relevant quantum numbers areN and
σ, the eigenvalues of the Casimir invariant (number operator)
N̂ of U(2) and the linear Casimir invariant operator

N̂ ) t†t + s†s≡ n̂t + n̂s (1)

U(2) ⊃ U(1) (2)

U(2) ⊃ O(2) (3)

σ̂ ) (t†s + s†t) (4)
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of O(2), respectively. The quantum numberN takes integer
values and the quantum numberσ takesN + 1 values, ranging
in steps of 2 fromN to -N.

If we carry out a rotation to new operatorsS andT via the
transformations

with corresponding definitions for the conjugate operatorsS†

and T†, then the linear Casimir invariant of O(2) can be
expressed in the form

where we have used the boson conservation relations†s + t†t
) S†S + T†T ) N̂. The eigenvalues ofT†T are equivalent to
those of (N - σ)/2 and will be denoted byV, which ranges
from 0 to N.

The eigenstates of the O(2) chain may be defined in terms
of the quantum numbersN andV and denoted by|NV〉, where

and

These eigenstates|NV〉 can be expressed in terms of the two-
dimensional harmonic oscillator basis of Schwinger,10 which
allows ladder operators to be constructed. These ladder
operators have been discussed in detail elsewhere11 and
compared with those arising from the U(1) dynamical symmetry
chain of U(2).

Algebraic Hamiltonians have generally been written in terms
of the quadratic Casimir invariant of O(2),σ̂2, with eigenvalues
(N - 2V)2, which occur in degenerate pairs (except for the
particular case whereV ) N/2, for evenN, which is nondegen-
erate). The permitted values ofV, the vibrational quantum
number, then range from 0 toN/2 whenN is even and from 0
to (N - 1)/2 whenN is odd, respectively.

A general algebraic Hamiltonian based on the quadratic
Casimir invariant of O(2) is

whereC2[O(2)] ) (s†t + t†s)2 andA0 andA2 are constants. Note
that A0 subsumes the Casimir invariant of U(2), which is a
constant. Then, from eqs 6 and 9,

where the labelN has been omitted from the energy eigenvalues.
This may be compared with the familiar vibrational energy

expression of Dunham12 (measuring energies from theV ) 0
level)

whereω0 andω0x0 represent the vibrational wavenumber and
anharmonicity correction (the left-hand side should correctly
readEV/hc). This allows us to make the identificationsω0 )
-4A2N and-ω0x0 ) 4A2 so thatA2 ) -ω0x0/4 andN ) 1/x0.

Hence, in the particular case of O(2) dynamical symmetry,
with restriction to the quadratic Casimir invariant, the quantum
number (vibron number)N is equal to the inverse of the
anharmonicity constantx0. However, the dissociation limit
corresponds to-4A2N2 ≡ ω0/4x0, which is also dependent on
the value ofN. The N dependence of both the vibrational
constants and the dissociation energy has implications for the
ability of the quadratic Casimir invariant of O(2) to provide a
fit to the full set of bound vibrational levels of a diatomic
molecule, sinceN must necessarily be a constant.

Expansion in Powers of the Quadratic Casimir of O(2).
Accurate vibration-rotation energy levels of H2 and its isoto-
pomers have been generated by Le Roy,13,14the former reference
using relativistically corrected potential energy curves and the
latter using more accurate recent data and extending the
calculations to include the tritium isotopes. Since we are
primarily interested in illustrating the ability of the algebraic
approach to treat such systems, we shall focus on the extensive
vibrational data of Le Roy13 for H2, HD, and D2 (measured
relative to zero of energy at the appropriate dissociation limit).

We attempt to fit the vibrational energy levels to an algebraic
Hamiltonian expressed as a power series in the quadratic Casimir
invariant of O(2), in the form

The energy eigenvalues of this algebraic Hamiltonian with
respect to the basis|NV〉 in which the Casimir invariant of O(2)
is diagonal may be written down by inspection as

The results forp ) 1, 2, and 3, leading to expansions up to
the sixth power in vibrational quantum numberV, are shown in
Table 1 for H2, HD, and D2. Although the spectral fits do
improve with increasing number of terms as expected, the values
of vibrational constants vary somewhat erratically as a conse-
quence of fixed interrelationships involving the various powers
of vibrational quantum number arising from the terms (N -
2V)2k. In addition, the series becomes seriously affected by
numerical instability when further terms are included in the
expansion.

TABLE 1: Fits to the Set of Bound Vibrational Energy
Levels of H2, HD, and D2 with Expansion to Power p of the
Quadratic Casimir Invariant of O(2) a

molecule value ofp Vmax Nopt

rms
deviation ω0 ω0x0 D0

H2 1 17 34 138.1 4423 130.1 36 325
H2 2 16 32 58.8 4140 74.2 36 049
H2 3 15 31 24.6 4339 158.8 36 128
H2 expt 4284 123.4 36 118
HD 1 19 39 177.3 3864 99.0 36 651
HD 2 18 36 88.2 3507 37.3 36 258
HD 3 17 35 38.2 3867 160.2 36 450
HD expt 3726 93.3 36 405
D2 1 24 48 194.8 3152 65.7 36 925
D2 2 22 45 79.4 2920 32.0 36 637
D2 3 22 45 68.9 3026 57.4 36 724
D2 expt 3058 63.2 36 748

a The experimental values refer to those corresponding to the data
of Le Roy13 used as input. The optimal value ofN and maximum value
of vibrational quantum number observed are given in each case. The
root-mean-square deviation,ω0, ω0x0, andD0 are quoted in cm-1.

S) (s + t)/x2 T ) (s - t)/x2 (5)

s†t + t†s ) S†S- T†T ≡ N̂ - 2T†T (6)

N̂|NV〉 ) N|NV〉 (7)

σ̂|NV〉 ) σ|NV〉 (8)

T†T|NV〉 ) V|NV〉 (9)

Ĥ ) A0 + A2C2[O(2)] (10)

Ĥ|NV〉 ) [A0 + A2(N - 2T†T)2]|NV〉 ≡ EV|NV〉

) [A0 + A2N
2 - 4A2V(N - V)]|NV〉 (11)

EV ) ω0V - ω0x0V
2 (12)

Ĥ ) ∑
k)0

p

A2kC2[O(2)]k (13)

EV ) ∑
k)0

p

A2k(N - 2V)2k (14)
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The number of predicted bound vibrational levels is found
initially to be in excess of the observed maximum values of
vibrational quantum number (14, 17, and 22 for H2, HD, and
D2, respectively), but an improved description occurs as higher
terms are included in the expansion.

The dissociation energy is determined from the relation

and the experimental values can be seen to be reasonably well
described by the three-term expansion in each case. The values
of vibrational energies provided by Le Roy13 are with respect
to an energy zero located at the dissociation limit for each
molecule so the value ofD0 is equivalent to the negative of the
energy of theV ) 0 vibrational level.

Expansion in Powers of the Linear Casimir of O(2). All
previous fits to diatomic vibrational energy levels in terms of
the O(2) chain have considered expansions in terms of the
quadratic Casimir of O(2).1,3,4 Higher order orthogonal groups
do not possess linear Casimir invariants, and this has been used
as an argument against the inclusion of the first-order Casimir
invariant of O(2) in the algebraic Hamiltonian.

However, we note from eq 11 that the coefficients of the
linear and quadratic powers of the vibrational quantum number
are related throughN. This interrelationship would be removed
if we introduced the linear Casimir of O(2), based on the
expansion

so that

The coefficients of the linear and quadratic powers of vibrational
quantum number are now decoupled from each other, and the
energy eigenvalues no longer depend on the precise value ofN
since only three independent coefficients are required.

With inclusion of the linear Casimir invariant of O(2), the
analogues of eqs 13 and 14 are

and

The results forp ) 2-6, up to and including the sixth power
of the vibrational quantum number, are shown in Table 2 for
H2, HD, and D2. Note that convergence is achieved when the
expansion in the vibrational quantum number is truncated at
the sixth power, with a root-mean-square deviation of less than
0.5 cm-1. In fact, the fits to the individual levels are observed
to lie within 1 cm-1 of the values provided as input with
maximum deviations of 0.7, 0.6, and 1.0 cm-1 for H2, HD, and
D2, respectively.

A number of features should be noted. Although the highest
bound level in H2 (corresponding toV ) 14) lies 139 cm-1

below the dissociation limit, a further (spurious) level appears
in the fit at 22.2 cm-1 below the dissociation limit. The highest
vibrational levels in HD (V ) 17) and D2 (V ) 21) lie 2.5 and

1.1 cm-1 below their respective dissociation limits, and no
further bound states are observed in the fits to the vibrational
levels for those molecules.

Since all powers of vibrational quantum number, up to and
including the sixth power, are free to vary independently in the
expansion, the fits to the vibrational energy levels are indepen-
dent of the precise value of quantum numberN, but the value
of N should be consistent with the number of bound vibrational
levels ((N + 2)/2 for N even and (N + 1)/2 for N odd).

Although Table 2 displays the vibrational constantsω0, it is
a straightforward matter to rearrange the energy expression, eq
19, as a power series in (V + 1/2). The coefficent of the linear
term then represents the familiar vibrational constantωe, with
predicted values of 4408.4, 3820.1, and 3122.0 cm-1 for H2,
HD, and D2, respectively. The true vibrational constants are
expected to scale with reduced massµ as µ-1/2, and if we
multiply the above values byµ1/2, we find the numerical results
3117.2, 3119.1, and 3122.0, respectively, showing that the
expected dependence on reduced mass is obeyed to within a
good approximation.

3. Coordinate Realization of Algebraic Hamiltonians

Here, we consider the realization of the Hamiltonians
corresponding to the O(2) dynamical symmetry in terms of a
coordinate space representation.1,15 This enables potential
functions to be extracted from the algebraic procedure.

In the case U(2)⊃ O(2), it has been demonstrated previ-
ously15,16 that the quadratic Casimir invariant of O(2) can be
related to the Hamiltonian corresponding to a one-dimensional
Morse oscillator. We shall summarize the main steps of the
argument here since the results are of significance in the present
context, although it should be stressed that this particular
approach is restricted to the subalgebra O(2) of U(2).

Applying the transformations

to the quadratic Casimir invariant of O(2)) gives

D0 ) -∑
k)0

p

A2kN
2k (15)

Ĥ ) A0 + A1C1[O(2)] + A2C2[O(2)] (16)

EV ) A0 + A1(N - 2V) + A2(N - 2V)2 (17)

Ĥ ) ∑
k)0

p

AkC1[O(2)]k (18)

EV ) ∑
k)0

p

Ak(N - 2V)k (19)

TABLE 2: Fits to the Set of Bound Vibrational Energy
Levels of H2, HD, and D2 with Expansion to Power p of the
Linear Casimir Invariant of O(2) a

molecule value ofp Vmax rms deviation ω0 ω0x0 D0

H2 2 17 134.6 4399 128.2 36 279
H2 3 16 46.4 4166 85.3 36 056
H2 4 15 7.99 4275 114.8 36 126
H2 5 15 3.58 4289 123.2 36 120
H2 6 15 0.30 4284 123.4 36 118
H2 expt 4284 123.4 36 118
HD 2 20 176.7 3855 98.5 36 630
HD 3 18 61.0 3596 59.3 36 316
HD 4 17 11.4 3758 105.2 36 419
HD 5 17 2.3 3712 84.2 36 403
HD 6 17 0.38 3726 93.3 36 405
HD expt 3726 93.3 36 405
D2 2 24 176.4 3162 65.7 36 982
D2 3 24 61.3 2947 39.4 36 650
D2 4 21 11.5 3084 70.5 36 764
D2 5 21 2.3 3045 56.2 36 745
D2 6 21 0.46 3058 63.2 36 749
D2 expt 3058 63.2 36 748

a The experimental values refer to those corresponding to the data
of Le Roy13 used as input. The root-mean-square deviation,ω0, ω0x0,
andD0 are quoted in cm-1.

s ) (i/x2)(x + ipx) t ) (1/x2)(y + ipy) (20)

(s†t + t†s)2 ) (xpy - ypx)
2 ) (-i∂/∂φ)2 ≡ L̂2 (21)
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where L̂ is the angular momentum operator, and we have
transformed to polar coordinates viax ) F cosφ andy ) F sin
φ. The Hamiltonian for the O(2) chain then becomes (we drop
the constant termA0 for convenience)

with eigenvaluesA2(N - 2V)2. Since the two-dimensional
harmonic oscillator Hamiltonian can be expressed in polar
coordinates as

with eigenvalues given by 2(N + 1), we have, from eqs 22 and
23,

This result depends on the fact that the chosen basis is the two-
dimensional harmonic oscillator basis of Schwinger.10

Transformation to the one-dimensional variabley via F )
(N + 1)1/2 exp(-y/2) gives

This represents the Hamiltonian of a one-dimensional Morse
oscillator with well depth parameter (N + 1)/2, corresponding
to Int (N/2 + 1) bound vibrational levels. The eigenvalues of
this Hamiltonian are given by (compare eq 11)

Note from eqs 25 and 26 that the well depth is given byDe )
-A2(N + 1)2. The dissociation energy is given byD0 ) -A2N2.

The realization of the quadratic Casimir invariant of O(2) in
terms of the Hamiltonian corresponding to the one-dimensional
Morse oscillator shows that the inclusion of the linear Casimir
in the Hamiltonian for the O(2) dynamical symmetry chain
would result in a term involving the square root of the Morse
oscillator Hamiltonian.

It is of interest to note in this connection that an expansion
in fifth and higher powers of the square root of the Morse
potential was first proposed by Dunham12 and forms the basis
for the extensive series of papers by Huffaker17 on the perturbed
Morse oscillator potential. However, it should be noted that
the square root dependence arising naturally within the algebraic
approach involves the form of Morse potential which vanishes
at infinite separation, whereas that of Dunham refers to the form
which is zero at equilibrium, at the foot of the potential well.

It is straightforward to show that the coordinate space
(potential) representation of the algebraic Hamiltonian providing
the best fit to the vibrational energy levels of H2 and its
isotopomers has the form

where we note that the minimum value ofV (occurring aty )
0) gives the depth of the potential well as

The inverse power dependence of the correct interaction
potential at long range18 precludes an accurate fit to high
vibrational levels by a potential of Morse type. We note here
that the involvement of the square root term does permit such
a fit to high vibrational energy levels up to dissociation but
also implies that the potential is defined only for values of the
variabley greater than-ln 2, such that the potential lies below
the value at dissociation. A similar square root dependence has
been introduced previously for a potential describing the coupled
stretching vibrations of triatomic molecules.20

The difference beween well depth and dissociation energy,
the zero-point energy, does depend on the chosen value ofN.
Table 3 shows how the predicted well depths for H2, HD, and
D2 compare with the values implied by the vibrational constants
arising from the optimal fits to the vibrational energy levels.
Note that the values ofN in Table 3 are consistent with the
observed values of 14, 17, and 21 forVmax for H2, HD, and D2,
respectively, although the optimal fit for H2 did yield an
additional bound level, as noted in section 2 above.

The largest discrepancy in zero-point energy observed in
Table 3 occurs with H2, which also has the largest energy gap
between the highest bound vibrational level and the dissociation
limit. A bound vibrational level lies close to the dissociation
limit for both HD and D2, which is consistent with the
observation that the relevant integer value ofN yields a well
depth close to that predicted by the vibrational constants. This
restriction to integer values ofN represents the only constraint
implicit in the algebraic model, provided that the algebraic
Hamiltonian is expanded in powers of the linear Casimir
invariant of O(2), in order that the coefficients of the various
powers of vibrational quantum number may be varied indepen-
dently. An expansion in powers of the quadratic Casimir
invariant of O(2) invokes an additional constraint in that such
an expansion is unable to describe independently the various
powers of vibrational quantum number appearing in the Dunham
energy expansion.

The potentials determined from eq 27 are found to differ
slightly, as a consequence of the integer nature of the vibron
numberN, in conflict with the Born Oppenheimer approxima-
tion. In fact, the expansion coefficients in eq 27 areN-
dependent, and the potential parameters are not invariant.
However, the resultant potentials for HD and D2 are found to
lie close in value over the full range, with maximum deviation
of around 50 cm-1 (less than 1 kJ mol-1). The deviation
between the H2 and HD potentials is somewhat larger but never
exceeds 200 cm-1. This slight discrepancy is to be expected
since the H2 well depth is slightly less well represented relative
to those of the other two isotopomers, as noted above.

It should be emphasized that the route from the fit to the
energy levels to the coordinate space potential, as described
above, is unique to the O(2) subalgebra of U(2). A general
procedure for the construction of the classical limit of boson
operators involves a coherent state approach,16,19and a simplified
version of this scheme has been formulated20 in terms of so-
called intensive boson operators first introduced by Gilmore.21

However, direct application of this latter approach is found to
generate a potential function in which the well depth occurs at
the same value of energy as theV ) 0 vibrational level. In
other words, the zero-point energy is lost. This deficiency may
be rectified by the following minor modification of the
previously proposed procedure.20

Ĥ ) A2(s
†t + t†s)2 ) A2L̂

2 (22)

Ĥosc) - ∂
2

∂F2
- 1

F
∂

∂F
+ L̂2

F2
+ F2 (23)

Ĥ ) A2(F2 ∂
2

∂F2
+ F ∂

∂F
- ((N + 1) - F2)2 + (N + 1)2) (24)

Ĥ ) -4A2(- d2

dy2
+ ((N + 1)/2)2(1 - e-y)2 - ((N + 1)/2)2)

(25)

EV ) -4A2[-((N + 1)/2 - V - 1/2)2] ≡ A2N
2 - 4A2NV +

4A2V
2 (26)

V(y) ) k ) ∑
k)0

p

Ak(N + 1)k e -ky/2(2 - e-y)k/2 (27)

De ) -∑
k)0

p

Ak(N + 1)k (28)
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Intensive boson operators may be constructed by dividing
the original boson operators by (N + 1)1/2 (rather than byN1/2),
whereby the commutators vanish in the limit of high boson
number. The intensive boson operator derived fromt is replaced
by a complex number whose complex conjugate represents the
intensive boson operator derived fromt†. The intensive boson
operators derived fromsands† may be eliminated by application
of of the boson conservation relation (eq 1) which will then
hold to order N-1. The classical limit of the algebraic
Hamiltonian (eq 22) then becomes

where the complex number has been expressed in the form (q
+ ip)/x2, whereq and p represent position and momentum,
respectively. If we assign zero to the momentum variable and
replace the variableq by y, defined by the relationq2 ) exp-
(-y), the classical potential becomes

which is precisely the result derived previously from the O(2)
algebra (cf. the potential term in eq 25). This analysis can be
extended to the algebraic Hamiltonian, eq 18, leading to the
classical potential function given in eq 27.

This substitution ofN by N + 1 in the previously proposed
method20 generates a classical potential function whose well
depth is consistent with the known value of dissociation energy
and includes the zero-point energy.

4. Concluding Remarks

We have demonstrated that the expansion of the algebraic
Hamiltonian as a power series in the linear Casimir invariant
of the subalgebra O(2) of the algebra U(2) leads to accurate
fits to the vibrational energy levels of H2 and its isotopomers
up to the dissociation limit in each case. By restricting attention
to a dynamical symmetry chain, no diagonalization is required
and the energy expressions can be written down by inspection.
The eigenstates are also well defined although they have not
been used explicitly in the present analysis.

The coordinate space representation of the algebraic Hamil-
tonian becomes a power series expansion in half integral powers
of the Morse Hamiltonian with a corresponding classical
potential expanded in half integral powers of the Morse potential
function. We note that a knowledge of the full set of vibrational
levelssup to dissociationswas necessary for the construction
of a potential function which would accurately represent the
highly excited vibrational energy levels. The equilibrium
position is not uniquely defined from the algebraic approach,
since the variabley is dimensionless, and can be expressed in
the form R(r - re), whereR represents the range parameter
and re the equilibrium separation, by analogy with the Morse
oscillator potential.

The zero-point energy predicted by the model depends on
the choice ofN, the irreducible representation of U(2). The

number of bound levels isN/2 + 1 or (N + 1)/2, forN even or
odd, respectively, leading to predictions forN of 28 (29), 34
(35), and 42 (43), for H2, HD, and D2, respectively. The best
fits to the zero-point energies predicted by the vibrational
constants are 29, 34, and 42, respectively. The potentials arising
from the spectral fits should each display the same value of
well depth, but this is affected slightly by the constraint thatN
should be an integer. This is most obvious in the case of H2,
where the well depth appearing in the potential functions differs
by some 10 cm-1 from that predicted by the vibrational
constants, and may be attributed to the fact that the highest
bound vibrational level in H2 lies some 140 cm-1 below the
dissociation limit.

Potental functions may alsosand more generallysbe deter-
mined by use of intensive boson operators, and it has been
demonstrated that the definition of these operators can be
adapted, while remaining within the philosophy of an expansion
valid to order 1/N, in order to generate a classical potential which
displays the correct value of well depth.

In the absence of this modification, intensive boson operators
generate classical potential functions which have the undesirable
property that the well depth is identical to the dissociation
energy, thereby eliminating the zero-point energy.

In conclusion, we emphasize that we have managed to achieve
fits of high accuracy to the vibrational energy levels of diatomic
molecules based on an algebraic Hamiltonian for which a well-
defined potential function can be identified from a classical
Hamiltonian in which the momentum coordinate is put equal
to zero. We have also demonstrated the ability of the algebraic
approach to provide results of quantitative accuracy for the
vibrational energy levels of diatomic molecules without the need
to perform explicit diagonalization of the algebraic Hamiltonian
itself.
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TABLE 3: Predicted Well Depths and Zero-Point Energies
for H 2, HD, and D2 Derived from Optimal Fits to the
Vibrational Energy Levels and from the Classical Potentials
Using the Appropriate Value of Na

D0 De E0 E0(N) De(N)

H2 36 118 38 291 2173 2161 (N )29) 38 279 (N )29)
HD 36 405 38 292 1887 1884 (N )34) 38 289 (N )34)
D2 36 748 38 294 1546 1544 (N )42) 38 292 (N )42)

a All energy values are quoted in cm-1.

Hcl ) A2(N + 1)2 q2(2 - p2 - q2) (29)

V(y) ) A2(N + 1)2 e-y(2 - e-y) (30)
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